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Abstract

The basic rules of balancing the expected return on

an investment against its contribution to portfolio

risk are surveyed. The related concept of Capital

Asset Pricing Model asserting that the expected

return of an asset must be linearly related to the

covariance of its return with the return of the market

portfolio if the market is efficient and its statistical

tests in terms of Arbitraging Price Theory are also

surveyed. The intertemporal generalization and

issues of estimation errors and portfolio choice are

discussed as well.
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19.1. Introduction

Stock prices are volatile. The more volatile a stock,

the more uncertain its future value. Investment

success depends on being prepared for and being

willing to take risk. The insights provided by mod-

ern portfolio theory arise from the interplay be-

tween the mathematics of return and risk. The

central theme of modern portfolio theory is: ‘‘In

constructing their portfolios investors need to look

at the expected return of each investment in rela-

tion to the impact that it has on the risk of the

overall portfolio’’ (Litterman et al., 2003).

To balance the expected return of an investment

against its contribution to portfolio risk, an invest-

ment’s contribution to portfolio risk is not just the

risk of the investment itself, but rather the degree

to which the value of that investment moves up

and down with the values of the other investments

in the portfolio. This degree to which these returns

move together is measured by the statistical quan-

tity called ‘‘covariance,’’ which is itself a function

of their correlation along with their volatilities

when volatility of a stock is measured by its stand-

ard deviation (square root of variance). However,

covariances are not observed directly; they are

inferred from statistics that are notoriously un-

stable.

In Section 19.2, we summarize the Markowitz

(1952, 1959) mean–variance allocations rule under

the assumption that the correlations and volatilities

of investment returns are known. Section 19.3 de-

scribes the relationship between the mean variance

efficiency and asset pricing models. Section 19.4

discusses issues of estimation in portfolio selection.

19.2. Mean–Variance Portfolio Selection

The basic portfolio theory is normative. It con-

siders efficient techniques for selecting portfolios

based on predicted performance of individual se-

curities. Marschak (1938) was the first to express



preference in terms of indifference curves in a

mean–variance space. Von Neumann and Morgen-

stern (1947) provided an axiomatic framework to

study the theory of choice under uncertainty.

Based on these developments, Markowitz (1952,

1959) developed a mean–variance approach of

asset allocation.

Suppose there are N securities indexed by i,

i ¼ 1, . . . , N. Let R0 ¼ (R1, . . . , RN) denote the re-

turn of these N securities. Let m ¼ ER and S be the

mean and the nonsingular covariance matrix of R.

A portfolio is described by an allocation vector

X 0 ¼ (x1, . . . , xN) of quantity xi for the ith secur-

ity. In the mean–variance approach, an investor

selects the composition of the portfolio to maxi-

mize her expected return while minimizing the risk

(i.e. the variance) subject to budget constraint.

Since these objectives are contradictory, the in-

vestor compromises and selects the portfolio that

minimizes the risk subject to a given expected re-

turn, say d. A portfolio X is said to be the min-

imum-variance portfolio of all portfolios with

mean (or expected) return d if its portfolio weight

vector is the solution to the following constrained

minimization:

min
x

X 0SX (19:1)

subject to

X 0m ¼ d, (19:2)

and

X 0i ¼ 1, (19:3)

where i is an N � 1 vector of ones. Solving the

Lagrangian

L ¼ X 0SX þ l1 d � X 0m½ � þ l2 1� X 0ið Þ, (19:4)

yields the optimal portfolio

Xp ¼ 1
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: (19:6)

From Equation (19.5), we have:

Proposition 1: Any two distinct minimum-vari-

ance portfolios can generate the minimum variance

frontier.

Proposition 2: Let portfolio o as the portfolio

with the smallest possible variance for any mean

return, then the global minimum variance portfolio

has

X0 ¼ 1

i0S�1
i

� �S�1
i,

m0 ¼ ER0 ¼ EX
0
0R ¼ i0S�1m

i0S�1
i
,

¼ 1

i0S�1
i

(19:7)

Proposition 3: The covariance of the return of the

global minimum-variance portfolio o with any port-

folio p is

Cov Ro,Rp

� 	 ¼ 1

iS
�1
i
: (19:8)

that is, the correlation of them is positive,

corr(R0, Rp) > 0 for any portfolio p.

Proposition 4: If the covariance of the returns of

two portfolios p and q equal to 0, Cov(Rp, Rq) ¼ 0,

then portfolios p and q are called orthogonal portfo-

lios and the portfolio q is the unique portfolio which

is orthogonal to p.

Proposition 5: All portfolios on positively slope

part of mean–variance frontier are positively correl-

ated.

When a risk-free asset with return Rf is present,

the expected return of investing in the N þ 1 assets

will be

ma ¼ (1� a)Rf þ aX 0m, (19:9)

where 0 < a < 1 is the proportion of investment in

the risky assets. The minimum-variance portfolio

with the expected return of investing in both N
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risky assets and the risk-free asset equal to d,

ma ¼ d, is the solution of

a2X 0SX (19:10)

subject to Equations (19.3) and (19.9) equal to d,

X�
p ¼ 1

i0S�1
m� Rf ið Þ

S
�1

m� Rf ið Þ, (19:11)

a ¼ i0S�1
m� Rf ið Þ

m� Rf ið ÞS�1
m� Rf ið Þ

(d � Rf ): (19:12)

Thus, when there is a risk-free asset, all min-

imum-variance portfolios are a combination of a

given risky asset portfolio with weights propor-

tional to X�
p and the risk-free asset. This portfolio

of risky assets is called the tangency portfolio be-

cause X�
p is independent of the level of expected

return. If we draw the set of minimum-variance

portfolios in the absence of a risk-free asset in a

two-dimensional mean-standard deviation space

like the curve GH in Figure 19.1, all efficient port-

folios lie along the line from the risk-free asset

through portfolio X�
p .

Sharpe (1964) proposes a measure of efficiency

of a portfolio in terms of the excess return per unit

risk. For any asset or portfolio with an expected

return ma and standard deviation sa, the Sharpe

ratio is defined as

sra ¼ ma � Rf

sa

(19:13)

The tangency portfolio X�
p is the portfolio with the

maximum Sharpe ratio of all risky portfolios.

Therefore, testing the mean–variance efficiency of

a given portfolio is equivalent to testing if the

Sharpe ratio of that portfolio is maximum of the

set of Sharpe ratios of all possible portfolios.

19.3. Mean–Variance Efficiency and Asset

Pricing Models

19.3.1. Capital Asset Pricing Models

The Markowitz mean–variance optimization

framework is from the perspective of individual

investor conditional on given expected excess re-

turns and measure of risk of securities under con-

sideration. The Capital Asset Pricing Model

(CAPM) developed by Sharpe (1964) and Lintner

(1965) asks what values of these mean returns will

be required to clear the demand and supply if

markets are efficient, all investors have identical

information, and investors maximize the expected

return and minimize volatility.

An investor maximizing the expected return and

minimizing risk will choose portfolio weights for

which the ratio of the marginal contribution to

portfolio expected return to the marginal contribu-

tion to risk will be equal. In equilibrium, expected

excess returns are assumed to be the same across

investors. Therefore, suppose there exists a risk-

free rate of interest, Rf , and let Zi ¼ Ri---Rf be the

excess return of the ith asset over the risk-free rate

(Rf ) then the expected excess return for the ith

asset in equilibrium is equal to

E[Zi] ¼ bimE[Zm], (19 :14)

and

bim ¼ Cov(Zi, Zm)

Var( Zm)
, (19:15)

where Zm is the excess return on the market port-

folio of assets, Zm ¼ Rm---Rf , with Rm being the

return on the market portfolio.

In the absence of a risk-free asset, Black (1971)

derived a more general version of the CAPM. In

Variance

Mean

Rf 

Figure 19.1. Mean–Variance frontier with risk-free

asset
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the Black version, the expected return of asset i in

equilibrium is equal to

E[Ri] ¼ E[Rom]þ bim{E[Rm]� E[Rom]}, (19 :16)

and

bim ¼ Cov(Ri, Rm)

Var( Rm)
, (19:17)

where Rom is the return on the zero-beta portfolio

associated with m. The zero-beta portfolio is de-

scribed as the portfolio that has the minimum vari-

ance among all portfolios that are uncorrelated

with m.

Closely related to the concept of trade-off be-

tween risk and expected return is the quantification

of this trade-off. The CAPM or zero-beta CAPM

provides a framework to quantify this relationship.

The CAPM implies that the expected return of an

asset must be linearly related to the covariance of its

return with the return of the market portfolio and

the market portfolio of risky assets is a mean–vari-

ance efficient portfolio.Therefore, studies ofmarket

efficiency have been cast in the form of testing the

Sharpe–Lintner CAPM and the zero-betaCAPM.

Under the assumption that returns are independ-

ently, identically (IID) multivariate normally dis-

tributed, empirical tests of the Sharpe–Lintner

CAPMhave focusedon the implication ofEquation

(19.14) that the regression of excess return of the ith

asset at time t, Zit ¼ Rit---Rft on the market excess

return at time t, Zmt ¼ Rmt---Rft, has intercept equal

to zero. In other words for the regression model

Zit ¼ cim þ bimZmt þ «it,
i¼1, ..., N,
t¼1, ..., T : (19:18)

The null hypothesis of market portfolio being

mean–variance efficient is:

H0: c1m ¼ c2m ¼ . . . ¼ cNm ¼ 0: (19:19)

Empirical tests of Black (1971) version of the

CAPM model note that Equation (19.15) can be

rewritten as

E[Ri] ¼ aim þ bimE[Rm],

aim ¼ E[Rom](1 � bim) 8i:
(19:20)

That is, the Black model restricts the asset-specific

intercept of the (inflation adjusted) real-return

market model to be equal to the expected zero-

beta portfolio return times one minus the asset’s

beta. Therefore, under the assumption that the real-

return of N assets at time t, Rt ¼ (Rit, . . . , RNt)
0 is

IID (independently identically distributed) multi-

variate normal, the implication of the Black model

is that the intercepts of the regression models

Rit ¼ aim þ bimRmt þ «it,
i¼1, ..., N,
t¼1, ..., T, (19:21)

are equal to

aim ¼ (1� bim)g, (19:22)

where the constant g denotes the expected return

of zero-beta portfolio.

19.3.2. Arbitrage Pricing Theory

Although CAPMmodel has been the major frame-

work for analyzing the cross-sectional variation in

expected asset returns for many years, Gibbons

(1982) could not find empirical support for the

substantive content of the CAPM using stock

returns from 1926 to 1975. His study was criti-

cized by a number of authors from both the

statistical methodological point of view and the

empirical difficulty of estimating the unknown

zero beta return (e.g. Britten-Jones, 1999; Camp-

bell et al., 1997; Gibbons et al., 1989; Shanken,

1985; Stambaugh, 1982; Zhou, 1991). Ross (1977)

notes that no correct and unambiguous test

can be constructed because of our inability to ob-

serve the exact composition of the true market

portfolio. Using arbitrage arguments, Ross (1977)

proposes the Arbitrage Pricing Theory (APT) as a

testable alternative. The advantage of the APT is

that it allows for multiple risk factors. It also does

not require the identification of the market port-

folio.

Under the competitive market the APT assumes

that the expected returns are functions of an un-

known number of unspecified factors, say

K(K < N):
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Ri ¼ Ei þ bi1d1t þ . . .þ biKdKt þ «it,
i¼1, ..., N,
t¼1, ..., T,

(19:23)

where Rit is the return on asset i at time t, Ei is its

expected return, bik are the factor loadings, dkt
are independently distributed zero mean common

factors and the «it are zero mean asset-specific

disturbances, assumed to be uncorrelated with

the dkt.

As an approximation for expected return, the

APT is impossible to reject because the number

of factors, K, is unknown. One can always intro-

duce additional factors to satisfy Equation (19.23).

Under the additional assumption that market port-

folios are well diversified and that factors are per-

vasive, Connor (1984) shows that it is possible to

have exact factor pricing. Dybvig (1985) and Grin-

blatt and Titman (1987), relying on the concept of

‘‘local mean–variance efficiency’’, show that given

a reasonable specification of the parameters of an

economy, theoretical deviations from exact factor

pricing are likely to be negligible. Thus, the factor

portfolios estimated by the maximum likelihood

factor analysis are locally efficient if and only if

the APT holds (Roll and Ross, 1980, Dybvig and

Ross, 1985).

19.3.3. Intertemporal Capital Asset Pricing

Model (ICAPM)

The multifactor pricing models can alternatively be

derived from an intertemporal equilibrium argu-

ment. The CAPM models are static models. They

treat asset prices as being determined by the port-

folio choices of investors who have preferences

defined over wealth after one period. Implicitly,

these models assume that investors consume all

their wealth after one period. In the real world,

investors consider many periods in making their

portfolio decisions. Under the assumption that

consumers maximize the expectation of a time-

separable utility function and use financial assets

to transfer wealth between different periods and

states of the world and relying on the argument

that consumers’ demand is matched by the exogen-

ous supply, Merton (1973) shows that the efficient

portfolio is a combination of one of mean–

variance efficient portfolio with a hedging portfolio

that reflects uncertainty about future consumption-

investment state. Therefore, in Merton Intertem-

poral Capital Asset Pricing Model (ICAPM) it

usually lets market portfolio serve as one factor

and state variables serve as additional factors.

The CAPM implies that investors hold a mean–

variance portfolio that is a tangency point between

the straight line going through the risk-free return

to the minimum-variance portfolios without risk-

free asset in the mean-standard deviation space.

Fama (1996) shows that similar results hold in

multifactor efficient portfolios of ICAPM.

19.4. Estimation Errors and Portfolio Choice

The use of mean variance analysis in portfolio

selection requires the knowledge of means, vari-

ances, and covariances of returns of all securities

under consideration. However, they are unknown.

Treating their estimates as if they were true param-

eters can lead to suboptimal portfolio choices (e.g.

Frankfurther et al., 1971; Klein and Bawa, 1976;

Jorion, 1986) have conducted experiments to show

that because of the sampling error, portfolios

selected according to the Markowitz criterion are

no more efficient than an equally weighted port-

folio. Chopra (1991), Michaud (1989), and others

have also shown that mean–variance optimization

tends to magnify the errors associated with the

estimates.

Chopra and Zemba (1993) have examined the

relative impact of estimation errors in means, vari-

ances, and covariances on the portfolio choice by

a measure of percentage cash equivalent loss

(CEL). For a typical portfolio allocation of large

U.S. pension funds, the effects of CEL for errors

in means are about 11 times as that of errors

in variances and over 20 times as that of errors in

covariances. The sensitivity of mean–variance effi-

cient portfolios to changes in the means of individ-

ual assets was also investigated by Best and Grauer

(1991) using a quadratic programming approach.
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Themain argument of these studies appears to be

that in constructing an optimal portfolio, good esti-

mates of expected returns are more important than

good estimates of risk (covariance matrix). How-

ever, this contention is challenged by De Santis

et al. (2003). They construct an example showing

the estimates of Value at Risk (VaR), identified as

the amount of capital that would be expected to be

lost at least once in 100months, using a $100million

portfolio invested in 18 developed equitymarkets to

the sensitivity of different estimates of covariance

matrix. Two different estimates of the covariance

matrix of 18 developed equity markets are used –

estimates using equally weighted 10 years of data

and estimates giving more weights to more recent

observations. They show that changes in estimated

VaR can be between 7 and 21 percent.

The main features of financial data that should

be taken into account in estimation as summarized

by De Santis et al. (2003) are:

(i) Volatilities and correlations vary over time.

(ii) Given the time-varying nature of second mo-

ments, it is preferable to use data sampled at

high frequency over a given period of time,

rather than data sampled at low frequency

over a longer period of time.

(iii) When working with data at relatively high

frequencies, such as daily data, it is import-

ant to take into account the potential for

autocorrelations in returns.

(iv) Daily returns appear to be generated by a

distribution with heavier tails than the nor-

mal distribution. A mixture of normal distri-

butions appear to approximate the data-

generating process well.

(v) Bayesian statistical method can be a viable

alternative to classical sampling approach in

estimation (e.g. Jorion, 1986).
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